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SUMMARY

Let X be a nonnegative integer-valued random variable whose distribution
is that of the sum of a geometric variable Y with parameter 6 and a nonnegative
integer-valued random variable Z independent of Y whose distribution does not
depend on 8. The variable X is said to have aconvoluted geometric distribution.
The class of all such distributions are here characterized by a system of
differential equations satisfied by their probability mass functions. The
characterization is shown to be useful in maximum likelihood estimation of

the parameter O when the distribution of Z is known.

I. INTRODUCTION

There are many sources in nature that give rise to discrete data in the
form of signals plus noise. For example, data obtained by a Geiger counter
may be viewed as sums of counts due to the presence of a radioactive substance
and counts due to noise or static. Other examples in which discrete signal
plus noise models appropriately describe random phenomena occur in the use of
sonar for bottom fishing (see Cushing (1973), for example), in phyvsiological
processes such as synaptic transmission of neural impulses (see Katz (1966),
Samaniego (1976)), and in single server queues in which individuals arriving
for service can be classified into mutually exclusive categories (see, for
example, Shonick (1970)). In situations such as these when the observed
random variable presents itself as the sum of independent discrete variables,

its distribution may be described as a discrete signal plus noise distribution.




A one parameter distribution might be viewed as appropriate when the noise

variable can be observed alone, but the signal, whose distribution belcngs

to a one parameter family, can be observed only in the presence of noise. The
noise distribution may be estimated with high precision based on auxiliary sampling

on the noise variable, and thus might be assumed equal to the empirical distribution.

Let Y be a geometric random variable with probability mass function
given by

P,(Y = k) = (1 -9)e" k =0,1,2

where 8 £ (0,1). If Z is a nonnegative integer-valued random variable
independent of Y, and X = Y+2Z, then the probability mass function of X is

the convolution of the sequences {P (Y = i)} and {P(Z = i)}. Such convoluted

8
geometric distributions arise in a familiar life testing context. Suppose
the lifetime (in hours) of an item on test is distributed according to an
exponential distribution with density

-

fx(x) = de x>0

where X > 0. The number of hours of life of the item has a geometric dis-
tribution with parameter 8 = e-l. If the items on test are not inspected
hourly, and the lifetime is recorded as the number of hours before the wear-
out is observed, then the recorded lifetime might be modelled as a convoluted

geometric variable. For example, if inspection occurs independently with

probability p each hour. Then the recorded lifetime is the sum of two
independent geometric variables. If the recording of a wear-out is delayed

one hour with probability p, then the recorded lifetime is the sum of

independent geometric and Bernoulli variables.




Estimation problems for specific signal plus noise distributions have
been examined by several authors. For example, Gaffey (1959) constructed
a consistent extimator for the distribution of one component of a
continuous signal plus noise distribution. Sclove and Van Ryzin (1969)
derived method of moments estimators for a variety of multiparameter signal
plus noise distributions. There has been only limited success in maximum
likelihood estimation for such models due to the cumbersome nature of the
likelihood function, which, for discrete signals, consists of the product
of (possibly infinite) sums involving the probability mass function of the
signal. Samaniego (1976) examined maximum likelihood estimation for one
parameter convoluted Poisson distributions, solving the estimation problem

for certain families of such distributions.

In this paper, the family of convoluted geometric distributions is
characterized by a system of differential equations satisfied by their
probability mass functions. An application of the characterization result

to maximum likelihood estimation of the geometric parameter is presented.

II. THE CHARACTERIZATION RESULT

A variety of characterizations of the geometric distribution, or more
generally, the negative binomiai distribution, may be found in the literature.
Ferguson (1965) characterizes the geometric distribution in terms of the
independence of the minimum and the difference of two independent discrete

variables. The negative binomial distribution is characterized by Katz(1946)




via a difference equation satisfied by its probability mass function

together with a moment condition. A characterization of the negative
binomial distribution by systems of differential equations satisfied by

its probability mass functionwas obtained by Boswell and Patil (1973).

This latter result bears a resemblance to the characterization established
here, but does not reduce to a characterization of the geometric
distribution alone and is based on differential equations of a substantially
different form. Moreover, their result hypothesizes the existence of

moments of all orders, a requirement not made in the result below. .

Theorem. Let X be a nonnegative integer-valued random variable whose

distribution is indexed by a parameter 8 € (0,1). Then

3 P

736Pe(x=n)=-——-—+ z e P,(X = n-j) Yn, Yo (1)

if, and only if, the distribution of X is a convolution of the geometric
distribution with parameter 8 and the distribution of a nonnegative integer

valued random variable which does not depend on 6.

Proof. Let {pi , i =0,1,...} be a sequence of constants such that

-]
p,.€[0,1]¥i and £ p, = 1. Let X be a random variable whose probability
i 4=0 1L

mass function is

n .
¥l = & i
X =n) = ii:O (1-0)0p__. . (2)




Then
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P.X = n) n 5 n o
PRI N j-1 _gyel-d
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P.X = n) B
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= — +j§19 Bk = 5= 1)

Thus, the probability mass function of a convoluted geometric distribution
satisfies (1). Conversely, suppose the distribution of X satisfies (1).
We show that there exists a sequence {pi , 1 =0,1,...},with piE [0,1] Vi,
such that PG(X = n) satisfies (2) ¥Yn. The fact that Z pi= 1 follows from
the equation ZZPQ()(= n) = 1. The proof is by induction. For n = 0, we
have

P (X = 0)
d _ "8
%0 fgl o= = -6

which may be written

12 - 1 = 5 a
1550 Po(X=0) + 7552 B (X=10) =0

Equating the indefinite integrals of both sides of (3), we obtain

or

Pe(x; 0) = (1-9)p,-

Since (1 -9)po must be a probability for all @ € (0,1), we have that

Py € [0,1]. We now assume that for r < k,

! i
Z(1-0) @p__

Eg(k = T =
v 1=0

-




where ij [0,1] for j = 0,1,...,r, and show that (2) holds for n = k.
We have
k j-1
3 P(X = k)
—_— = = = +. P = -3
> Pg(x k) 1.6 j;le PQ(X k-1j)
which, by the induction hypothesis, may be written
K P (X=k) P (X=k) k k
B 0 + e = - o gJ'l s gi-j
1-0 Bl & Pr-g
a-e)° 1 i=]
which simplifies to
& P .(X=k B =Xk k
ag e( o ) e(x"‘ ‘) Ry i'l
- e R O )
(1-8) i=1
Equating inite integrals of both sides of (4), we obtain
P (X= k) k .
(°] ¥ i
Toh o TR Ry
i=1

The fact that pk € [0,1] follows from the boundary condition that

PQ(X = k) € [0,1] for all & € (0,1). We thus have

k 3
P(X=k)= T (1-8) 0 p,__
8 i=0 k-1

with P € [0,1] for j = 0,1,...,k, completing the proof.

III. AN APPLICATION

The natural domain in which to apply the characterization result above
is maximum likelihood estimation of the geometric parameter 6 under the

assumption that the noise distribution {pi} is known. As stated earlier,

the assumption of a known noise distribution may be realized when the noise




variable may be sampled by itself. Maximum likelihood estimation of 6

may be facilitated by application of the characterization result when the

monotonicity property below obtains.

Definition. Let {Pg, 8 € @} be a family of distributions on the integers

indexed by a real-valued parameter 8. The family is said to have strong parametric

monotone decreasing ratio (strong PMDR) if for any a < b receiving positive

mass for every 8 € ©, the ratio

Qb-a-lpg(X b

PB(X = b)

is decreasing in 6.

This definition extends the notion of parametric monotone decreasing ratio

introduced in Samaniego (1976) to a stronger property which is relevant in the

estimation problem at hand.

Suppose a random sample X ""’Xh is obtained from a convoluted
geometric distribution. Denote the likelihood function by

n
= H < =
L(%X)5.-05%,0) 9, Py (X, = x;).

d
The characterization result implies that the likelihood equation > nL=0

may be written as

i -1 ¢
n  xj o’ Py (Xi = Xi-J)
* B A P(X. = %) ==y (3)
i=1 j=1 s i

n
L=

It is clear from (5) that if a convoluted geometric distribution has strong
PMDR, the derivative of the likelihood function is strictly decreasing and

the likelihood equation has at most one solution. Thus, the maximum




likelihood estimate of 6 is either zero or the unique solution of the

likelihood equation. The MLE may be approximated numerically to any

o)
desired degree of accuracy using the fact that the function =% n L may

&4

cross zero only once.

The geometric distribution itself has strong PMDR. An example of a convoluted

geometric distribution with strong PMDR is given below.

Example 1. Let X = Y+Z where Y is geometric with parameter 6 and Z is
Bernoulli with known parameter p. Let 0 < a < b, and consider

gb-a-lpe(X i) & gb

Po(X = b)

"=l cays™ o+ (1 - 9367 (1<p)]
b-1

-0 + (1-0)0°1-p)

@ e+ (1-p)
o p+6 (1-p)

+

which is decreasing in 6. If a = 0 < b,

b-a-1
2] PQ(X a) g

Pg(X = D) T pFe(l-p)

which is also decreasing in 8. Thus, this convoluted geometric distribution
has the strong PMDR property.

There are convoluted geometric distributions for which the maximum

likelihood estimation of 8 poses an extremely cumbersome analytical problem.
Examples can be constructed in which the likelihood equation has any fixed
number of solutions. The example below illustrates maximum likelihood L

estimation of @ for a convoluted geometric distribution without strong PMDR.




= 516 o

Example 2. Let Z be a random variable with probability mass function

(1000

2016 ihaa
%g%g ifn=1
RE e % if n =2
5%%3 FEEnE =23
0 otherwise

Let Y be a geometric variable with parameter 6, and let X = Y + Z. Suppose
one observation is taken on X, and X = 3 is observed. The equat/on é% =0
has solutions at 6 = .1, .2 and .3, the first and last corresponding to
local maxima. The likelihood is maximized at both of these values, and

either may serve as the MIE.

Since maximum likelihood estimation of 8 is in general equivalent to
n

finding zeros of a polynomial of degree T X, where x is the vector of
i=1

observations, the characterization result presented here, together with the
strong PMDR property when it is applicable, provide a significant simplific-

ation of the problem.
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